Comptes Rendus
Prospects for the characterization of habitable planets
[Perspectives pour la caractérisation des planètes habitables]
Comptes Rendus. Physique, Online first (2023), pp. 1-16.

Avec des milliers d’exoplanètes identifiées, la caractérisation des planètes habitables et l’identification potentielle de celles qui seraient habitées est un défi majeur pour les décennies à venir. Nous rappelons en premier lieu la définition des planètes habitables et les perspectives d’observation à venir pour leur caractérisation. Nous présentons ensuite une approche innovante pour évaluer l’habitabilité et l’habitation pour des systèmes extraterrestres. Cette méthode intégrée couple pour la première fois la modélisation de l’atmosphère et de l’intérieur planétaires avec l’activité biologique basée sur la modélisation des écosystèmes. Nous passons en revue ici les premières applications de cette approche pour évaluer la probabilité et l’impact de la méthanogénèse pour Encelade, la Terre primitive et Mars primitive. En se basant sur ces applications pour les situations du système solaire où l’habitabilité et l’habitation sont remises en question, nous montrons comment la méthode peut être utilisée pour éclairer la conception des futurs observatoires spatiaux en considérant l’habitabilité et l’habitation des exoplanètes semblables à la Terre autour d’étoiles semblables au Soleil.

With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.154
Keywords: planets, exoplanets, habitable zone, habitable planets, habitability
Mot clés : planètes, exoplanètes, zone habitable, planètes habitables, habitabilité
Stephane Mazevet 1 ; Antonin Affholder 2 ; Boris Sauterey 2 ; Alex Bixel 3, 4 ; Daniel Apai 3, 4 ; Regis Ferriere 2, 5, 6

1 Observatoire de la Côte d’Azur, Université Côte d’Azur, CNRS, 96 boulevard de l’observatoire, F06304 Nice cedex 4, France
2 Institut de Biologie de l’École Normale Supérieure, ENS, Université Paris Sciences et Lettres, Paris, France
3 Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA
4 Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA
5 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
6 International Research Laboratory for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS, Université Paris Sciences et Lettres
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A15_0,
     author = {Stephane Mazevet and Antonin Affholder and Boris Sauterey and Alex Bixel and Daniel Apai and Regis Ferriere},
     title = {Prospects for the characterization of habitable planets},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.154},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Stephane Mazevet
AU  - Antonin Affholder
AU  - Boris Sauterey
AU  - Alex Bixel
AU  - Daniel Apai
AU  - Regis Ferriere
TI  - Prospects for the characterization of habitable planets
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.154
LA  - en
ID  - CRPHYS_2023__24_S2_A15_0
ER  - 
%0 Journal Article
%A Stephane Mazevet
%A Antonin Affholder
%A Boris Sauterey
%A Alex Bixel
%A Daniel Apai
%A Regis Ferriere
%T Prospects for the characterization of habitable planets
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.154
%G en
%F CRPHYS_2023__24_S2_A15_0
Stephane Mazevet; Antonin Affholder; Boris Sauterey; Alex Bixel; Daniel Apai; Regis Ferriere. Prospects for the characterization of habitable planets. Comptes Rendus. Physique, Online first (2023), pp. 1-16. doi : 10.5802/crphys.154.

[1] Michel Mayor; Didier Queloz A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995) no. 6555, pp. 355-359 | DOI

[2] Michael Perryman The Exoplanet Handbook, Cambridge University Press, 2018 | DOI

[3] David K. Sing; Jonathan J. Fortney; Nikolay Nikolov et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion, Nature, Volume 529 (2016) no. 7584, pp. 59-62 | DOI

[4] Benjamin Charnay; M. Bonnefoy; A. Boccaletti; G. Chauvin; S. Lacour; M. Nowak Characterization of exoplanetary atmospheres with VLT-SPHERE, SF2A-2019: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (P. Di Matteo; O. Creevey; A. Crida et al., eds.) (2019), Di

[5] J.-L. Beuzit; A. Vigan; D. Mouillet et al. SPHERE: the exoplanet imager for the Very Large Telescope, Astron. Astrophys., Volume 631 (2019), A155 | DOI

[6] A. Boccaletti et al. SPHERE+: Imaging young Jupiters down to the snowline (2020) (preprint, arXiv:2003.05714) | DOI

[7] GRAVITY Collaboration; S. Lacour et al. First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799 e, Astron. Astrophys., Volume 623 (2019), L11 | DOI

[8] Jonathan P. Gardner; John C. Mather; Mark Clampin et al. The James Webb Space Telescope, Space Sci. Rev., Volume 123 (2006) no. 4, pp. 485-606 | DOI

[9] Giovanna Tinetti; Pierre Drossard; Paul Eccleston et al. A chemical survey of exoplanets with ARIEL, Exp. Astron., Volume 46 (2018) no. 1, pp. 135-209 | DOI

[10] David C. Catling; James F. Kasting Atmospheric Evolution on Inhabited and Lifeless Worlds, Cambridge University Press, 2017 | DOI

[11] James F. Kasting; Daniel P. Whitmire; Ray T. Reynolds Habitable Zones around Main Sequence Stars, Icarus, Volume 101 (1993) no. 1, pp. 108-128 | DOI

[12] Ravi Kumar Kopparapu; Ramses M. Ramirez; James F. Kasting et al. Habitable Zones around Main-sequence Stars: New Estimates, Astrophys. J., Volume 765 (2013) no. 2, 131 | DOI

[13] David J. Stevenson Life-sustaining planets in interstellar space?, Nature, Volume 400 (1999) no. 6739, p. 32 | DOI

[14] Raymond Pierrehumbert; Eric Gaidos Hydrogen Greenhouse Planets Beyond the Habitable Zone, Astrophys. J. Lett., Volume 734 (2011) no. 1, L13 | DOI

[15] Ramses M. Ramirez; Ravi Kumar Kopparapu; Michael E. Zugger; Tyler D. Robinson; Richard Freedman; James F. Kasting Warming early Mars with CO 2 and H 2 , Nat. Geosci., Volume 7 (2014) no. 1, pp. 59-63 | DOI

[16] Ramses M. Ramirez; Lisa Kaltenegger A Volcanic Hydrogen Habitable Zone, Astrophys. J. Lett., Volume 837 (2017) no. 1, L4 | DOI

[17] Ravi Kumar Kopparapu; Ramses M. Ramirez; James SchottelKotte; James F. Kasting; Shawn Domagal-Goldman; Vincent Eymet Habitable Zones around Main-sequence Stars: Dependence on Planetary Mass, Astrophys. J. Lett., Volume 787 (2014) no. 2, L29 | DOI

[18] Jérémy Leconte; Francois Forget; Benjamin Charnay; Robin Wordsworth; Alizée Pottier Increased insolation threshold for runaway greenhouse processes on Earth-like planets, Nature, Volume 504 (2013) no. 7479, pp. 268-271 | DOI

[19] Planetary Habitability Laboratory; University of Puerto Rico at Arecibo (https://phl.upr.edu/home)

[20] Benjamin J. Fulton; Erik A. Petigura; Andrew W. Howard et al. The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets, Astron. J., Volume 154 (2017) no. 3, 109 | DOI

[21] Li Zeng; Stein B. Jacobsen; Dimitar D. Sasselov et al. Growth model interpretation of planet size distribution, Proceedings of the National Academy of Science, Volume 116 (2019) no. 20, pp. 9723-9728 | DOI

[22] Stéphane Mazevet; A. Licari; G. Chabrier; A. Y. Potekhin Ab initio based equation of state of dense water for planetary and exoplanetary modeling, Astron. Astrophys., Volume 621 (2019), A128 | DOI

[23] Sean N. Raymond; Andre Izidoro Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion, Icarus, Volume 297 (2017), pp. 134-148 | DOI

[24] Dániel Apai; Fred Ciesla; Gijs D. Mulders et al. A comprehensive understanding of planet formation is required for assessing planetary habitability and for the search for life (2018) (preprint, arXiv:1803.08682) | DOI

[25] Julien de Wit; Hannah R. Wakeford; Michaël Gillon et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c, Nature, Volume 537 (2016) no. 7618, pp. 69-72 | DOI

[26] Julien de Wit; Hannah R. Wakeford; Nikole K. Lewis et al. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1, Nat. Astron., Volume 2 (2018), pp. 214-219 | DOI

[27] Eric Agol; Caroline Dorn; Simon L. Grimm; Amaury H. M. J.; Valerie Van Grootel et al. Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides, Planet. Sci. J., Volume 2 (2021), 1 | DOI

[28] Michaël Gillon; Amaury H. M. J. Triaud; Brice-Olivier Demory et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, Volume 542 (2017) no. 7642, pp. 456-460 | DOI

[29] Michaël Gillon; Victoria S. Meadows; Eric Agol et al. The TRAPPIST-1 JWST Community Initiative, Bulletin of the American Astronomical Society, Volume 52 (2020) no. 2, 0208 | DOI

[30] Andrew P. Lincowski; Jacob Lustig-Yaeger; Victoria S. Meadows Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss, Astron. J., Volume 158 (2019) no. 1, 26 | DOI

[31] Jacob Lustig-Yaeger; Victoria S. Meadows; Andrew P. Lincowski The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST, Astron. J., Volume 158 (2019) no. 1, 27 | DOI

[32] Ravi Kumar Kopparapu; E. T. Wolf; Victoria S. Meadows Characterizing Exoplanet Habitability, Planetary Astrobiology (Victoria S. Meadows; Giada N. Arney; Britney E. Schmidt; David J. Des Marais, eds.), University of Arizona Press, 2020, pp. 449-476 | DOI

[33] Joshua Krissansen-Totton; Ryan Garland; Patrick Irwin; David C. Catling Detectability of Biosignatures in Anoxic Atmospheres with the James Webb Space Telescope: A TRAPPIST-1e Case Study, Astron. J., Volume 156 (2018) no. 3, 114 | DOI

[34] Boris Sauterey; Benjamin Charnay; Antonin Affholder; Stéphane Mazevet; Régis Ferrière Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate, Nat. Commun., Volume 11 (2020), 2705 | DOI

[35] Owen R. Lehmer; David C. Catling; Joshua Krissansen-Totton Carbonate-silicate cycle predictions of Earth-like planetary climates and testing the habitable zone concept, Nat. Commun., Volume 11 (2020), 6153 | DOI

[36] Jacob L. Bean; Dorian S. Abbot; Eliza M.-R. Kempton A Statistical Comparative Planetology Approach to the Hunt for Habitable Exoplanets and Life Beyond the Solar System, Astrophys. J. Lett., Volume 841 (2017) no. 2, L24 | DOI

[37] The LUVOIR Team The LUVOIR Mission Concept Study Final Report (2019) (preprint, arXiv:1912.06219) | DOI

[38] B. Scott Gaudi; Sara Seager; Bertrand Mennesson et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report (2020) (preprint, arXiv:2001.06683) | DOI

[39] Alex Bixel; Dániel Apai Bioverse: A Simulation Framework to Assess the Statistical Power of Future Biosignature Surveys, Astron. J., Volume 161 (2021) no. 5, 228 | DOI

[40] Alex Bixel; Dániel Apai Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection, Astrophys. J., Volume 896 (2020) no. 2, 131 | DOI

[41] Lisa Kaltenegger How to Characterize Habitable Worlds and Signs of Life, Annu. Rev. Astron. Astrophys., Volume 55 (2017) no. 1, pp. 433-485 | DOI

[42] Joshua Krissansen-Totton; David C. Catling Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model, Nat. Commun., Volume 8 (2017), 15423 | DOI

[43] P. Kharecha; James F. Kasting; J. L. Siefert A coupled atmosphere-ecosystem model of the early archean Earth, Geobiology, Volume 3 (2005) no. 2, pp. 53-76 | DOI

[44] Antonin Affholder; François Guyot; Boris Sauterey; Régis Ferrière; Stéphane Mazevet Bayesian analysis of Enceladus’s plume data to assess methanogenesis, Nat. Astron., Volume 5 (2021), pp. 805-814 | DOI

[45] Boris Sauterey; Benjamin Charnay; Antonin Affholder; Stéphane Mazevet; Régis Ferrière Early Mars habitability and global cooling by H 2 -based methanogens, Nat. Astron. (2022), pp. 1263-1271 | DOI

[46] Antonin Affholder Coupling biological, interior and atmosphere models to infer habitability and biosignatures, Ph. D. Thesis, Sorbonne University, Paris, France (2022)

[47] Linda Spilker Cassini-Huygens’ exploration of the Saturn system: 13 years of discovery, Science, Volume 364 (2019) no. 6445, pp. 1046-1051 | DOI

[48] P. C. Thomas; R. Tajeddine; M. S. Tiscareno et al. Enceladus’s measured physical libration requires a global subsurface ocean, Icarus, Volume 264 (2016), pp. 37-47 | DOI

[49] J. Hunter Waite; Christopher R. Glein; Rebecca S. Perryman et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes, Science, Volume 356 (2017) no. 6334, pp. 155-159 | DOI

[50] Gaël Choblet; Gabriel Tobie; Christophe Sotin et al. Powering prolonged hydrothermal activity inside Enceladus, Nat. Astron., Volume 1 (2017), pp. 841-847 | DOI

[51] Jason C. Goodman; Erik Lenferink Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds, Icarus, Volume 221 (2012) no. 2, pp. 970-983 | DOI

[52] Ruth-Sophie Taubner; Patricia Pappenreiter; Jennifer Zwicker et al. Biological methane production under putative Enceladus-like conditions, Nat. Commun., Volume 9 (2018), 748 | DOI

[53] Mark W. Claire; John Sheets; Martin Cohen; Ignasi Ribas; Victoria S. Meadows; David C. Catling The Evolution of Solar Flux from 0.1 nm to 160 μm: Quantitative Estimates for Planetary Studies, Astrophys. J., Volume 757 (2012) no. 1, 95, p. 95 | DOI

[54] Ravi Kumar Kopparapu; Eric Hébrard; Rus Belikov et al. Exoplanet Classification and Yield Estimates for Direct Imaging Missions, Astrophys. J., Volume 856 (2018) no. 2, 122 | DOI

[55] Ilaria Pascucci; Gijs D. Mulders; Eric Lopez The Impact of Stripped Cores on the Frequency of Earth-size Planets in the Habitable Zone, Astrophys. J. Lett., Volume 883 (2019), L15 | DOI

[56] Dániel Apai; Tom D. Milster; Dae Wook Kim et al. A Thousand Earths: A Very Large Aperture, Ultralight Space Telescope Array for Atmospheric Biosignature Surveys, Astron. J., Volume 158 (2019) no. 2, 83, p. 83 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Doppler cross-correlation spectroscopy as a path to the detection of Earth-like planets

Michel Mayor

C. R. Phys (2023)


Exoplanets: Foreword

Anne-Marie Lagrange; Daniel Rouan

C. R. Phys (2023)


Hunting for Cold Exoplanets via Microlensing

Jean-Philippe Beaulieu

C. R. Phys (2023)